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Abstract
In the Earth systemmodels (ESMs) participating in theCoupledModels Intercomparison Project
phase 6 (CMIP6), the tropical low-cloud feedback is 50%more positive than its predecessors (CMIP5)
and continues to dominate the spread in simulated climate sensitivity. In the context of recent studies
reporting larger feedbacks for stratocumulus (Sc) than shallow cumulus (Cu) clouds, it appears crucial
to faithfully represent the geographical extent of each cloud type to simulate realistic low-cloud
feedbacks. Herewe use a novel observation-basedmethod to distinguish Sc andCu clouds together
with satellite data fromCloud-Aerosol Lidar and Infrared Pathfinder SatelliteObservations
(CALIPSO) andClouds and the Earth’s Radiant Energy System (CERES) to evaluate Sc andCu cloud
fractions, cloud radiative effects and cloud feedbacks in the two latest generations of CMIPESMs.
Overall, theCMIP6models performbetter than theCMIP5models inmost aspects considered here,
indicating progress. Yet the ensemblemean continues to underestimate themarine tropical low-cloud
fraction,mostly attributable to Sc. Decomposition of the bias reveals that the Sc-regime cloud fraction
is better represented inCMIP6, although Sc regimes occur too infrequently—even less frequently
than inCMIP5. Building on our Sc andCu discriminationmethod, we demonstrate that CMIP6
models also simulatemore realistic low-cloud feedbacks thanCMIP5models, especially the Sc
component. Finally, our results suggest that part of the CMIP6 low-cloud feedback increase can be
traced back to greater cloud fraction in Sc-dominated regions.

1. Introduction

Howcloudswill respond to global warming, which is the essence of cloud feedback, continues to be a leading
source of uncertainty in the twomost recent CoupledModels Intercomparison Project (CMIP) generations
(Zelinka et al 2016, 2020). The associated diversity of behavior impedes our ability to project themagnitude of
future climate change and associated impacts (Vial et al 2013, Caldwell et al 2016, Zelinka et al 2020).More
specifically, tropical low-cloud feedbacks, which are about 50% larger inCMIP6 (Cesana and delGenio 2021),
remain particularly challenging because they dominate the spread among Earth systemmodel (ESM) estimates
of equilibrium climate sensitivity (ECS), ameasure of the globally averaged surface air warming resulting from a
doubling of CO2 (Bony andDufresne 2005, Andrews et al 2012, Vial et al 2013, Caldwell et al 2016).

Low cloudsmay be separated into twomain categories: stratocumulus (Sc, including stratus clouds),
typically driven by cloud-top radiative cooling, and shallow cumulus (Cu), driven by surface heatfluxes. Since
these low clouds are dominated by different processes, they are typically represented by different
parametrizations (i.e., turbulence for Sc and plume-like convection for Cu), and they exhibit distinct sensitivities
to sea surface temperature (SST) and estimated inversion strength ([EIS]; Cesana and del Genio 2021,
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Myers et al 2021), the twomain low-cloud controlling factors (Qu et al 2015, Klein et al 2017). As a result, Sc and
Cu clouds generate distinct feedbacks that aremodulated by SST and EIS patterns (e.g., Andrews and
Webb 2018, Cesana and del Genio 2021). Consequently, simulating Sc or Cu clouds in thewrong placesmay
result in unrealistic feedbacks, which explains why the issue of the Sc andCu geographical extent emerges as
being essential to estimating low-cloud feedbacks and the contribution to simulated ECS.

However,most past studies have investigated low-cloud feedbacks as awhole rather than separating the
contribution of Sc andCu (Bony andDufresne 2005, Soden andHeld 2006, Zelinka et al 2013, 2016). This
limitation is partly driven by a lack of observations that distinguish these cloud regimes (mostlyfield campaigns
and ground-based sites, e.g., Rémillard et al 2012) and partly because it has been difficult to distinguish them in
ESMoutputs. The advent of new Sc andCu global-scale datasets, such as theCumulus And Stratocumulus
CloudSat-CAlipsoDataset (CASCCAD;Cesana et al 2019b), provide newpossibilities in ESMevaluation of Sc
andCu cloud fractions, radiative effects and cloud feedbacks.

Here we leverage theCASCCADdataset to develop a novelmethod that separates Sc- fromCu-dominated
regimes over tropical oceans.We then use it with theGeneral circulationmodel-oriented Cloud-Aerosol Lidar
and Infrared Pathfinder Satellite Observations (CALIPSO) cloud product (CALIPSO-GOCCP) to evaluate the
evolution of tropical Sc andCu cloud fractions fromCMIP5 toCMIP6 ESMgenerations. Finally, we investigate
how changes in ESMs Sc andCu cloud properties affect low-cloud feedback.

2.Data andmethods

2.1.Observations
To evaluate themodels in sections 3.1 and 3.2, we usemonthly low-cloud fraction (LCF)maps (cloud heights
<3.36 km) over the tropical oceans, defined as 35°S to 35°N, fromCALIPSO-GOCCPobservations (Chepfer
et al 2010), which sample every 333 m along-track near-nadir lidar backscatter profiles for 480 mheight
intervals. CALIPSO-GOCCPLCF is consistent with theCALIPSO lidar simulator LCF outputs from themodels,
described in the next section.

To quantify the shortwave cloud radiative effect in the supplementary information (SWCRE, defined as
clear-skyminus all-skyfluxes) at the top-of-atmosphere (TOA), we use themonthlymean fluxes fromCERES-
Energy Balanced and Filled product (CERES-EBAFEd4.1; Loeb et al 2018), which are designed to be compared
directly comparedwithCMIPmodel outputs.

To select subsidence regimes, we usemonthly large-scale pressure vertical wind at 500 hPa (ω500> 0 hPa
d−1) from three reanalyses: the 5th generation EuropeanCentre forMedium-RangeWeather Forecasts
atmospheric reanalysis (ERA5,Hersbach et al 2020),Modern-Era Retrospective analysis for Research and
Applications version 2 (MERRA-2), andNational Centers for Environmental Prediction/Department of Energy
(NCEP/DOE) reanalysis 2 (Kanamitsu et al 2002). Since it is unclear which reanalysis dataset best depictsω500,
we average them together to arguably obtain a best estimate. Using a specific reanalysis dataset instead of the
mean does not change qualitatively or quantitatively the results: the associated change in Sc andCu cloud
fractions are smaller than 1%absolute (not shown).

To validate our Sc andCudiscriminationmethod in section 2.3, we use CASCCAD (Cesana et al 2019b),
which separates Sc andCu based on cloudmorphology.More specifically, the CASCCADalgorithm identifies
overcast Sc, broken Sc, Cu under Sc, Cuwith stratiformoutflow and isolatedCuusing cloud top height,
horizontal cloud fraction, vertical cloud fraction variability and horizontal continuity through orbit granules.

All satellite and reanalysis datasets used in this study aremonthlymeans over the 2007–2016 period and over
a 2.5°× 2.5° grid.

For cloud feedback estimates (section 3.3), we use the inferred low, Sc andCu cloud feedbacks from
CASCCADobservations over tropical oceans as described inCesana andDelGenio (2021; see also
Supplementary text S1). These feedbackswere computed from the product of CASCCAD-based sensitivities to
SST and EIS and potential future SST and EIS pattern changes under an abrupt 4xCO2warming scenario and
weighted by Sc/(Sc+Cu) fraction. These estimates of cloud feedbacks are in good agreement with other
independent observationally inferred estimates (Ceppi andNowack 2021,Myers et al 2021).

2.2.Model simulations
For themodel evaluation in sections 3.1 and 3.2, we analyzemonthly outputs from global simulationswith
prescribed SST (following the AtmosphericModel Intercomparison Project, AMIP) from a subset of tenCMIP6
ESMs and their CMIP5 counterparts from the samemodeling center, as listed in table 1.We use the last eight
years of the CMIP6 simulations (2007–2014) because it partially overlapswith the observational record, and the
last eight years of the CMIP5 simulations (2001–2008) to remain consistent. Using the 2001–2008 time period
for CMIP6models does not change qualitatively or quantitatively the results: the changes inmultimodelmean
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Sc andCu cloud fractions are smaller than 0.04% absolute (not shown).We ensure a fair evaluation that
accounts for CALIPSO lidar limitations and uses similar cloud definitions as inCALIPSO-GOCCPby utilizing
CALIPSO-likemodel outputs, which explains whywe are limited to these tenmodeling centers. These outputs
were generated using theCALIPSO lidar simulator (Chepfer et al 2008) andwe further interpolate themon the
CALIPSO-GOCCP 2.5°× 2.5° grid. Finally, consistent with the observations, we focus our analysis on
subsidence regimes over tropical oceans (ω500> 0 hPa d−1, between 35°S and 35°N), where the high-cloud
fraction (cloud heights> 6.72 km) is small andminimally affects the detection of low clouds (see figure S2 of
Cesana et al 2019a).

In the supplementary information, we compute SWCREusing TOAmonthly all-sky (called rsut) and clear-
sky (called rsutcs)fluxes, which can be directly comparedwithCERES-EBAF observations.

In section 3.3, we use cloud feedbacks fromZelinka et al (2020), obtained using ESMoutputs from theCMIP
database inwhich the atmospheric CO2 levels were instantaneously quadrupled (4xCO2 experiment) compared
to a pre-industrial atmosphere (piControl experiment). The cloud feedback is then computed using the non-
cloud radiative kernelmethod, which quantities the sensitivity of TOA radiation to small perturbations and is
adjusted for non-cloud influences (Soden et al 2008). In this study, we focus on low-cloud feedbacks, defined as
cloud feedbacks from low-level cloudswith a cloud-top pressure greater than 680 hPa.

2.3. Sc andCudiscriminationmethods
While convective and stratiform clouds are often parameterized separately, distinct low-level convective and
stratiform cloud fractions are not typically available in theCMIP5 orCMIP6 archives. As a result, it is
particularly difficult to evaluate separately Sc andCu clouds inwidely available climatemodel output. Perhaps
themost straightforward approach to separate Sc- andCu-dominated gridboxes in an ESM (or any other global
dataset) is to define Sc andCu regimes based on geographical distributions of Sc andCuusingCASCCAD
observations. For that purpose, we can identify Sc andCu regimes using the fraction of Sc clouds, with ametric
computed as Sc/(Sc+Cu) in subsidence regime (ω500> 0 hPa d−1), to avoidmiddle- and high-level cloud
overlap, for eachmonth.Here we consider Sc as being all low clouds that are not isolatedCu and therefore the
sumof Sc+Cu= LCF.Where Sc/(Sc+Cu)� 0.5, we define LCFs for Sc andCu respectively as being LCFSc
= LCF and LCFCu= 0. Conversely, where Sc/(Sc+Cu)< 0.5, LCFSc= 0 and LCFCu= LCF.However, we note
thatmatching the observations using this geographicalmethod (referred to asGeomethod) assumes that ESMs
simulate the correct Sc andCumonthly regimes geographically and necessitates comparing ESMoutputs over
the same time period as CASCCAD,which is possible for CMIP6models but not CMIP5.

To address these shortcomings, we have developed anothermethod that can distinguish Sc andCumonthly
cloud regimes in any climatemodel or observational dataset. Thismethod can be used over any period of time
and is independent of environmental variables (e.g., vertical wind, EIS), which have often been used to separate
Sc andCu cloud regimes (e.g.,Medeiros and Stevens 2011, Nam et al 2012,Myers et al 2021) although
shortcomings of this traditionalmethod have been noted (Cesana and del Genio 2021, Crnivec et al 2023). It is
based on the greater area coverage of Sc compared toCu clouds, that is, their cloud fraction is typically larger
than that of Cu over the typical size of an ESMgridbox (∼100 km;Cesana et al 2019a).

Building on this discriminating characteristic, we separatemonthly Sc- andCu-dominated gridboxes
depending onwhether their low-cloud fraction is greater or less than themonthlymean LCFover the tropical
ocean (LCFtropics ) in subsidence regimes, instead of using theCASCCAD-derived Sc/(Sc+Cu) fraction. For each

Table 1.Weuse a subset of 10CMIP5 and 10CMIP6 ESMs from the same institutions to best characterize the changes that occurred between
CMIP5 andCMIP6model generations.

Institution CMIP6 CMIP5

BeijingClimate Centre (BCC) BCC-CSM2-MR bcc-csm1–1-m

CanadianCentre for ClimateModelling andAnalysis (CCCma) CanESM5 CanAM4

National Center for Atmospheric Research (NCAR) CESM2 CCSM4

Centre national de recherchesmétéorologiques (CNRM) CNRM-CM6-1 CNRM-CM5

Geophysical FluidDynamics Laboratory (GFDL) GFDL-CM4 GFDL-CM3

Goddard Institute for Space Studies (GISS) GISS-E2-1-G GISS-E2-R

MetOfficeHadleyCentre (MOHC) HadGEM3-GC31-LL HadGEM2-A

Institut Pierre-Simon Laplace (IPSL) IPSL-CM6A-LR IPSL-CM5B-LR

Model for Interdisciplinary Research onClimate (MIROC) MIROC6 MIROC5

Meteorological Research Institute (MRI) MRI-ESM2-0 MRI-CGCM3
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monthlymean, LCFSc= LCF and LCFCu= 0where LCF� LCF ,tropics and conversely, LCFSc= 0 and LCFCu
= LCFwhere LCF< LCF .tropics In the remainder of the study, we presentmonthlymeans of these LCFSc and
LCFCu over the eight-year time period. In addition, we use the samemethod to define themonthly frequency of
occurrence of Sc andCu cloud regimes in a gridbox for eachmonth, which can correspond to either the Sc or Cu
cloud regime, used infigures 5 and 7. Finally, we also compute the Sc andCuLCFmonthlymeanswithin their
regime, respectively, whichwe refer to as LCFregime., infigures 5, 6 and 7. This effectively corresponds to
averaging LCFwhere LCF� LCF ,tropics for LCFSc,regime andwhere LCF< LCFtropics for LCFCu,regime.

We validate this cloud fraction (CF)method, by comparing the resulting Sc andCu cloud fractions to those
obtained from theCASCCAD-basedGeomethod, which, by definition, generates Sc- andCu-dominated cloud
fractions the closest to the trueCASCCADSc andCu cloud fraction.Wefind that the Sc- andCu-dominated
cloud fractions from theCFmethod are highly correlatedwith that using theGeomethod (figure 1), even better
than using a threshold based on estimated inversion strength (e.g., EIS= 1 K). TheCFmethod alsoworks very
well (and better than the EISmethod)withmonthlymeans from the latest version of theGISS-ModelE3 climate
model (Cesana et al 2021), for whichwe have access to the constituent Sc andCu cloud fractions (figure 2). For
the sake of simplicity, we refer to these Sc- andCu-dominated cloud fractions as Sc andCu cloud fractions in the
remainder of themanuscript.

Figure 1.Maps of (left to right) Sc, Cu cloud fractions and Sc/(Cu+Sc) fraction for (top to bottom)CALIPSO-CASCCAD
(representing the reference distribution) andCALIPSO-GOCCP v2.9 (2007-2016) using theGeo, CF and EISmethods to separate Sc
andCu clouds (see section 2.3). Themeans are given in the upper left corner of eachmap. The linear correlation coefficients between
Scgeo, Cugeo, Sc/(Cu+Sc)geo and Sccf, Cucf , Sc/(Cu+Sc)cf are 0.94, 0.69 and 0.86.

Figure 2. Same asfigure 1 but forGISS-ModelE3model (2007–2014; Cesana et al 2021). The linear correlation coefficients between
Scgeo, Cugeo , Sc/(Cu+Sc)geo and Sccf, Cucf , Sc/(Cu+Sc)cf are 0.95, 0.73 and 0.66.
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3. Results

3.1. Geographical distributions
To evaluate Sc andCu clouds inCMIPESMs and their evolution betweenCMIP5 andCMIP6, we apply theCF
method to bothCALIPSO-GOCCPobservations and the correspondingmonthly CMIP simulator outputs from
afixed set of 10modeling centers across the twoCMIP generations (see table 1). Figure 3 showsmaps of Sc and
Cu cloud fractions—sometimes refer to as cloud covers in the literature—and Sc/(Sc+Cu) fraction for the
CALIPSO-GOCCP and the corresponding biases (modelsminus observations) for CMIP6 andCMIP5
multimodelmeans. The large Sc decks off thewest coasts of continents arewell captured in the observations with
cloud fractions larger than 90%at the heart of themain decks. By contrast, the Sc cloud fraction is far smaller in
the tradewind regions, where Cu clouds dominate and peak at around 30% in some regions. Overall, Sc andCu
clouds appear to bewell confinedwith relatively small overlapping areas, as inCASCCADobservations (figure 1,
top row). TheCMIP6multimodelmean reproduces the observed Sc andCu cloud patterns verywell with a
notable improvement over that of CMIP5models, which simulates toomuch Sc andCu cloud inCu- and Sc-
dominated regions, respectively, as exemplified by the Sc/(Sc+Cu) fraction (figure 3). However, although
collectively, CMIP6models have substantially increased Sc cloud fraction and slightly increasedCu cloud
fraction, both cloud fractions are largely underestimated compared to observations, especially over Sc decks.
This issue is investigated intomore detail by Crnivec et al (2023)with a slightly larger number ofmodels.

We next focus on the zonal distributions of Sc andCu clouds (figure 4). For this purpose, we not only analyze
Sc andCu cloud fractions (figure 4, top row) but also the frequency of occurrence of each regime (figure 4,
middle row) and the cloud fractionmeanwithin each regime (figure 4, bottom row), as described in section 2.3.
This decomposition reveals that Sc andCu cloud fractions within their regimes, and therefore the associated
model biases, are rather constant across latitudes in both observations andmodels, and therefore the variability
of CMIP Sc andCu cloud fraction biases is driven by differences in the frequency of occurrence of Sc andCu
regimes. For example, between 5°S and 15°N, theCMIP Sc cloud fraction bias is very small (figure 4, top row)
because the underestimate of the Sc cloud fractionwithin the Sc regime (figure 4, bottompanel) is compensated
by the overestimate of Sc-regime occurrences (figure 4,middle panel). By contrast, between 25°S and 10°S, the
CMIPmodels underestimate both the Sc-regime occurrence and cloud fraction, which results in the largest bias
of the Sc cloud fraction across the tropics: an underestimation by a factor of two compared to the observations.
On average, the CMIPmodels overestimate the frequency of occurrence of the Sc regimewithin the deep tropics
(approximately 10°S to 10°N), while they underestimate it elsewhere, and vice versa for theCu regime.However,
here again, our results show that CMIP6models better depict the observed frequency of Sc andCu regimes and
their associated cloud fractions than their CMIP5 predecessors. Similarly, wefind that the overestimate of the
shortwave radiative effect –clouds being too bright– has improved in theCMIP6 ensemble but remain large
(figure S1). The persistence of the ‘too few too bright’ problem inCMIP6models is consistent with a recent study
(Konsta et al 2022) and is explored inmore depth for Sc andCu regimes byCrnivec et al (2023).

3.2. Intermodel variability
While on average, bothCMIP6 andCMIP5 ensemble averages fail to reproduce the observedmagnitude of Sc
andCu cloud fractions, individualmodelsmay do better. For this reason, we explore intermodel tropicalmeans
of Sc andCu cloud fractions, frequencies and regime cloud fractions (figure 5).Wefind that all ESMs

Figure 3.Maps of (left to right) Sc, Cu cloud fractions and Sc/(Cu+Sc) fraction for (top to bottom)CALIPSO-GOCCP v2.9
(2007–2016) and for the CMIP6 andCMIP5multimodel biases (modelsminus observations, 2007–2014), using theCFmethod to
separate Sc andCu clouds (see section 2.3). Note that theCMIP Sc/(Cu+Sc) fractions are actual values and not biases. The linear
correlations between observed and simulated Sc, Cu and Sc/(Sc+Cu) ratio are 0.91, 0.82 and 0.88 for theCMIP6models and 0.87,
0.76 and 0.85 forCMIP5models, respectively.
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underestimate Cu cloud fraction and all butMIROC5,MIROC6 and IPSL-CM6Aunderestimate the Sc cloud
fraction (figure 5, top panel). Out of these threemodels, only IPSL-CM6Amanages tomatch the observed Sc
frequency and regimemean (figure 5,middle and bottompanels, respectively). The Sc overestimates for
MIROC5 andMIROC6 is the result of a large overestimate of the frequency of occurrence of Sc clouds, which
more than compensate for the underestimated Sc-regime cloud fraction.On average, CMIP5 ESMs simulate the
correct globalmean Sc andCu frequencies (figure 5,middle panel) but the intermodel spread is very large. The
CMIP6 ESMs on the other hand slightly underestimate (overestimate) the frequency of Sc (Cu) clouds although
their intermodel spread is largely reduced. Furthermore, we note that the zonal variability of Sc andCu
frequencies is better simulated byCMIP6models (figure 4). In terms of regimemean, CMIP5 andCMIP6 ESMs
show a comparable intermodel spread and no specific improvement is noticeable inCMIP6 ESMs beyond a
largermultimodelmean for Sc clouds, as reported in the previous section. Finally, it is notable that the ratio of Sc
toCu cloud fraction is overestimated bymostmodels compared to observations—appearing below the black
line infigure 5 top panel—with possible implications for cloud feedback given that Sc aremore sensitive to
warming thanCu (Cesana andDelGenio 2021,Myers et al 2021).

3.3. Cloud feedback
In the previous section, we have characterized biases in the representation of Sc andCu clouds inCMIPESMs
and changes from theCMIP5 to theCMIP6 generation. In this section, we nowwant to evaluate cloud feedback
in Sc- andCu-dominated regions and explore a possible link between Sc andCu cloud representation and
feedback. For this purpose, we develop amethod slightly different from that introduced in section 2.3.

Although observationally inferred Sc andCu cloud feedbacks are available fromCALIPSO-CASCCAD
observations (Cesana andDel Genio 2021, Supplementary text S1), there are no equivalent Sc andCuCMIP-
specifiedmodel outputs to compare with. As in section 2.3, we design a newmethod to estimate Sc andCu
feedbacks from the low-cloud feedback and Sc andCu present-day cloud fractions that can be applied to both
observations and simulations for a consistent evaluation. Unlike section 2.3 though, we cannot use the sameCF
method because it would requiremonthlymean low-cloud feedbacks, i.e., feedbacks with time dimension,
which ismissing in the feedbacks we use (Zelinka et al 2020).

Instead, wemultiply the simulated and observed low-cloud feedbackmaps by the present-day climatology of
either Sc or Cu cloud fractionmapwith respect to all clouds (i.e., no time dependence) to obtain CF-derived Sc
andCu cloud feedbackmaps, respectively. By doing so, we implicitly assume that Sc andCu 2D-geographical

Figure 4.Zonalmean of Sc (solid) andCu (dashed; top to bottom) cloud fractionmeans, frequency of regime occurrence and cloud
fractionmeanwithin each regime. The black, red and blue lines correspond to the observations, CMIP6 andCMIP5 ESMs,
respectively. The shading corresponds to the observed annual standard deviation.
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distributionswill remain identical in awarmer climate, which introduces some small uncertainty based on the
marginal interannual variability of Sc andCu clouds (Cesana andDelGenio 2021). This assumption is further
supported by results usingGISS-ModelE3 (seefigure S2), for which using Sc andCu 2D-geographical
distributions from awarmer climatemarginally reduces the Sc feedback, and therefore increases Cu feedback, by
0.03Wm−2K−1 (figure S3). Additionally, we use 0.7 LCFtropics threshold rather than LCF ,tropics as in section 2.3,
to distinguish the Sc andCu cloud regimes derived from theCFmethod. Using this smaller threshold in the
observations helps increase Sc-dominated and reduce Cu-dominated areas and obtain CF-derived Sc andCu
feedbacks that compare better with our referenceCASCCAD-inferred feedbacks, both in terms ofmean and
pattern correlation (figure 6). Additionally, we note that although using such a threshold respectively increases
and decreases Sc andCu cloud fractions, it does not qualitatively alter the conclusions of our analysis in
sections 3.1 and 3.2 (figure S4). On the one hand, we acknowledge that the pattern correlation between the
adjustedCF-derived and reference Cu feedbacks and the reference is small, albeit their globalmeans are close.
On the other hand, the adjustedCF-method results in a very high pattern correlation and a realistic globalmean
compared to the reference for the Sc feedback, which drivesmost of the total low-cloud feedback. Finally, we
apply the samemethod to ESMs to compute Sc- andCu-dominated feedbacks.

Figure 7 shows tropicalmaps of Sc andCu cloud feedback, using the adjustedCFmethod, for theCASCCAD
andCALIPSO-GOCCPobservations and theCMIP6 andCMIP5multimodelmeans. As in the cloud fraction
evaluation, collectively, CMIP6 ESMs substantially improved depiction of Sc cloud feedback both in terms of
mean and pattern correlation, as also for Cu clouds to a lesser extent, compared toCMIP5. Yet, we note that both

Figure 5. Scatter plot of the tropicalmean Sc andCu (from top to bottom) cloud fraction, frequency of regime occurrence and cloud
fractionmeanwithin each regime for theCALIPSO-GOCCPobservations (black), theCMIP6models (red) and the corresponding
CMIP5models (blue). The black lines in the top and bottompanels correspond to the ratio Sc/Cu,meaning that anymodel below that
line favors Sc over Cu clouds compared to observations. The shading corresponds to the observed annual standard deviation.
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generations underestimate themagnitude of the positive feedback. The regions inwhich theCMIP6multimodel
mean simulatesmore Sc clouds relative toCMIP5 (the subtropics and in the Peruvian andNamibian decks)
loosely correspond to increased Sc positive feedback, implying that the present-daymean state of Sc clouds is at
least partly related to how theywill evolve in awarmer climate.

We further pursue this hypothesis by showing that the change in low-cloud feedback betweenCMIP5 and
CMIP6 ESMswithin the samemodeling center correlates well with the change in Sc cloud fraction over Sc-
dominated regions, that is in regionswhere the climatologicalmean of Sc/(Sc+Cu) fraction over the full period
is greater than 0.5 (figure 8). As the Sc cloud fraction in Sc-dominated regions increases betweenCMIP5 and
CMIP6 ESMs, their low-cloud feedback becomesmore positive, which partly explains the increase in tropical
cloud feedback in theCMIP6 generation (Zelinka et al 2020, Cesana andDel Genio 2021). Put simply, the
addition of positive-feedback-producing Sc clouds inCMIP6models naturally resulted in amore positive low-
cloud feedback. Even though the correlation (r= 0.75) is statistically significant (p< 0.05), our sample ofmodels
is limited (tenmodeling centers). Additionally, we cannot rule out other changes betweenCMIP5 and 6model
versions contributing to increased low-cloud feedback, which is consistent with the positive intercept of the
correlation line betweenΔLow feedback andΔSc (figure 8). On the other hand, wefind no significant
correlation (r= 0.24, p> 0.05) betweenΔLow feedback andΔCu (change inCu cloud fractionwithin the same
modeling center overCu-dominated regions). Such a result is not surprising sincemost of the low-cloud
feedback is driven by Sc.

Figure 6.Maps of (left to right)CASCCAD-inferred Sc andCu (top to bottom) and adjustedCF-derived feedbacks. Themeans are
given in the upper left corner of eachmap. The linear correlation coefficients between Sc andCuCASCCAD-inferred feedbacks and
Sccf andCucf feedbacks are 0.92 and 0.22, respectively.

Figure 7.Maps of (left to right) Sc andCu adjustedCF-derived cloud feedback for (top to bottom)CASCCADandCALIPSO-GOCCP
and for theCMIP6 andCMIP5models. Themeans are given in the upper left corner of eachmap. The linear correlation coefficients
between observations andCMIP6 andCMIP5models are 0.39 and 0.20 for Sc, and 0.30 and 0.22 forCu, respectively.
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4. Conclusions and discussions

This study focuses on developing a novelmethod to distinguish Sc andCu clouds in observations and climate
models based on low-cloud fraction. Ourmethod is independent of traditionally used environmental variables
that have limitations. The use of thismethod together withCALIPSO-GOCCP andCASCCAD satellite
observations allows for an evaluation of Sc andCu clouds and their feedback in the twomost recent generations
of CMIPESMs (CMIP6 andCMIP5). Overall, wefind that CMIP6 ESMs have collectively improved their
depiction of Sc andCu cloud fractions, cloud radiative effects and cloud feedbacks in terms of pattern and
magnitude compared toCMIP5 ESMs, especially that of Sc.However, CMIP6 ESMs continue to underestimate
both Sc andCu cloud fractions and tend to slightly underestimate the frequency of occurrence of Sc—and
therefore overestimate that of Cu—on average. The largest CMIP6 Sc cloud biases occurwhere themodels
underestimate both the frequency of occurrence of Sc regime and their associated regime cloud fraction
(typically south of 10°S), while the smallest biases are identified around the deep tropics (between 5°S and 15°N)
where the underestimate of Sc-regime cloud fraction is compensated by an overestimate of the frequency of
occurrence of Sc regime. In addition, CMIP6 clouds remainmostly too bright compared to the observations—
although better thanCMIP5—corresponding to large Sc CRE biases. Using an innovativemethod and
observationally inferred low-cloud feedbacks, we then proceed to show evidence that themultimodel CMIP6 Sc
andCu cloud feedbacks are substantiallymore realistic thanCMIP5’s. Finally, our results suggest that part of the
increase in theCMIP6 low-cloud feedback (e.g., Zelinka et al 2020, Cesana andDel Genio 2021,Myers et al 2021)
can be traced back to larger Sc cloud fraction in Sc-dominated regions, although ourmodel sample remains
limited.

In light of the recent literature (e.g., Cesana andDel Genio 2021,Myers et al 2021), Sc feedback seems to be
themost important contributor to the tropical low-cloud feedback in contrast with the smaller Cu feedback.
Such a difference in Sc andCu feedback strength helps understandwhy addingmore Sc clouds—that produce a
positive feedback—in CMIP6 ESMs has led to greater low-cloud feedback: extending Sc-covered areas cloud
fraction therein both serve to amplify their positive feedback. However, the geographical location and
magnitude of Sc cloud fraction in the present-day climate are not the only factors at play in determining future
Sc cloud feedback; onemust also account for the sensitivity of Sc clouds to environmental factors (also known as
cloud-controlling factors; (Ceppi andNowack 2021, Cesana andDel Genio 2021, Scott et al 2020,Myers et al
2021). The evaluation of Sc andCu interannual sensitivities to environmental factors using ourCFmethod
should help better understand the origins of the large tropical feedback increase in someCMIP6 ESMs, and their
subsequent contribution to ECS, which cannot be solely explained by increased Sc cloud fractionmagnitude and
extent.

Figure 8.Relationship between the change of Sc-dominated-region cloud fraction and the change low-cloud feedback inCMIP
models (CMIP6minusCMIP5). Linear correlation coefficient (r) is 0.75 and p-value (p) is 0.01.
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TheCALIPSO-GOCCPobservations can be downloaded from theCFMIP-Obswebsite (http://climserv.ipsl.
polytechnique.fr/cfmip-obs/Calipso_goccp.html). TheCALIPSO-GOCCPCASCCAD statistical datasets can
be downloaded from theGISSwebsite (https://data.giss.nasa.gov/clouds/casccad/). CERES-EBAF 4.1 TOA
fluxeswere downloaded on theCERESwebsite (https://ceres.larc.nasa.gov/data/#ebaftoa-level-3). Three
reanalysis datasets were used in the study for temperatures: the 5th generation EuropeanCentre forMedium-
RangeWeather Forecasts atmospheric reanalysis (ERA5, downloaded fromhttps://doi.org/10.24381/cds.
6860a573 and by selectingmonthly averaged reanalysis and the temperature variable, theModern-Era
Retrospective analysis for Research andApplications version 2, downloaded fromhttps://disc.gsfc.nasa.gov/
datasets/M2IMNPASM_5.12.4/summary (https://doi.org/10.5067/2E096JV59PK7), andNational Centers for
Environmental Prediction /Department of Energy (NCEP/DOE) reanalysis 2, downloaded fromhttp://www.cpc.
ncep.noaa.gov/products/wesley/reanalysis2/.
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node.llnl.gov/) and the feedbacks fromZelinka et al (2020) at 10.5281/zenodo.5206851.
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